Saturday, 2 November 2013

Safety in Formula 1: Helmets (Part Two)

Safety in Formula 1 or any form of motorsport is very important, and therefore my next blog will be based on ‘Helmets’. As per my previous blog about Safety in Formula 1 ‘Clothing’ this blog will now focus on the crash/racing helmet. I most certainly believe that the racing/crash helmets also play a pivotal role in the safety of racing. Crash helmets have been made compulsory in Formula 1 racing since 1953, but like F1 the cars, their design and construction have evolved enormously since the beginning of this form of motorsport. For racing drivers, head and neck trauma remains the greatest single injury risk in any form of motorsport, hence the introduction of helmets and the Head and Neck Support (HANS) system.


According to, “…modern F1 helmets must be supremely light - around 1250 grams is the norm - and strong. The lighter the helmet, the less weight it adds to the driver’s head under the extreme G-forces experienced in accelerating/braking/cornering, hence the smaller the risk of whiplash-type injuries. And the stronger the helmet, the greater its ability to absorb impacts and resist penetration during a crash.”

The visor is constructed from a special clear polycarbonate, combining impact protection with flame resistance and exceptional visibility. According to, “Most drivers use tinted visors, the insides of which are coated with anti-fogging chemicals to prevent them misting up, particularly in wet conditions.” Several transparent tear-off strips are attached to the outside of the visor, which drivers may tear off if need be to clear there line of vision or dirt that may accumulate during the race.

Did you know…that despite the cutting edge materials used in their construction, Formula One helmet liveries are still painted by hand? It’s an incredibly skilled job requiring hundreds of hours of work for more complicated patterns and designs.

In order to ensure that the Helmets meet the strict safety standards required the Formula 1 helmets are subjected to extreme deformation and fragmentation tests. According to, “To pass the tests the helmet is made principally of carbon fibre, polyethylene and fire-resistant aramide, and is constructed in several layers.”
Source: Google Images.
In 2011, helmets began to develop with the feature of new Zylon strip across the top of the visor to enhance protection significantly. This safety precaution become relevant when a spring fell of Rubens Barrichello’s (Brawn GP car) and struck Felipe Massa through the visor.  According to Formula, “The strip, which is 50mm tall across the full width of the visor, overlaps the top 25mm of the visor itself and extends 25mm above the helmet shell edge. The strip adds about 70 grammes to the helmet, but doubles the impact performance of the visor.” 

Last but not least the F1 helmets undergo wind-tunnel testing to help achieve a design that minimises the drag produced when the driver is travelling at speed. I hope that you have enjoyed the read! 

No comments:

Post a Comment